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Abstract: In this paper, a new kernel function is introduced that improves the 
classification accuracy of support vector machines (SVMs) for both linear and 
non-linear data sets. The proposed kernel function, called Gauss radial basis 
polynomial function (RBPF) combine both Gauss radial basis function (RBF) 
and polynomial (POLY) kernels. It is shown that the proposed kernel converges 
faster than the RBF and POLY kernels. The accuracy of the proposed algorithm 
is compared to algorithms based on both Gaussian and polynomial kernels by 
application to a variety of non-separable data sets with several attributes. It is 
shown that the proposed kernel gives good classification accuracy in nearly all 
the data sets, especially those of high dimensions. 
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1 Introduction 

Support vector machines (SVMs) were introduced by Boser et al. (1992) to solve 
classification problems that commonly arise in machine learning operations. Although, it 
is a relatively new field of research, there exists several classification learning algorithms. 
However, there still exist issues regarding the accuracy of data classification using 
SVMs. 

One issue is identifying an appropriate kernel for the given data. Most algorithms rely 
on a priori knowledge to select the correct kernel. This is then followed by optimisation 
of the kernel parameters via machine learning or trial-and-error. Whilst rules-of-thumb 
exist for choosing appropriate kernel functions and parameters, this limits the usefulness 
of SVMs to expert users, especially since different functions and parameters can have 
widely varying performance. In an attempt to develop sound reasoning to identify a 
suitable kernel, Williamson et al. (1999) proposed using entropy numbers associated with 
mapping operators for Mercer kernels to aid identification of an appropriate kernel 
function. They derived new bounds for the generalisation error of feature space machines, 
such as SVMs and related regularisation networks, by obtaining new bounds on their 
covering numbers. The proofs are based on a viewpoint that is apparently novel in the 
field of statistical learning theory. The hypothesis class is described in terms of a linear 
operator mapping from a possibly infinite dimensional unit ball in feature space into a 
finite dimensional space. The covering numbers of the class are then determined via the 
entropy numbers of the operator. These numbers, which characterise the degree of 
compactness of the operator, can be bounded in terms of the eigenvalues of an integral 
operator induced by the kernel function used by the machine (Williamson et al., 1999; 
Chapelle and Schölkopf, 2002). An alternative approach to selecting an appropriate 
kernel is to use invariance transformations (Chapelle and Schölkopf, 2002). The 
drawback here is that they are mostly appropriate only for linear SVM classifiers. An 
analytical method that uses a kernel principal component analysis map incorporating 
invariance transformations (Lei and Govindaraju, 2005) can be applied to non-linear 
SVM classifiers. However, the SVM itself also needs improvement in both training and 
testing (evaluation). 

Tsang et al. (2005) discussed a way to take advantage of the approximations inherent 
in kernel classifiers, by using a minimum enclosing ball algorithm as an alternative 
means of speeding up training. Training time had previously been reduced mostly by 
modifying the training set in some way. Their core vector machine converged in linear 



   

 

   

   
 

   

   

 

   

   116 E.A. Zanaty et al.    
 

    
 
 

   

   
 

   

   

 

   

       
 

time with space requirements independent of the number of data points (Tsang et al., 
2005). Generally, in implementations of this method, the time and space complexities are 
very high because the core of the SVMs is based on approximate minimum enclosing ball 
algorithms which are computationally expensive. 

Maji et al. (2008) presented a technique for the exact evaluation of intersection kernel 
SVMs which is logarithmic in time. They have shown that the method is relatively simple 
and the classification accuracy is acceptable, but the runtimes are significantly increased 
compared with the established RBF and POLY kernels due to large number of SV for 
each classifier. 

Completely achieving a SVM with high accuracy classification therefore, requires 
specifying high quality kernel function. This paper addresses the problem of data 
classification using SVMs and considers as an extension of Zanaty and Aljahdali (2008) 
and Nashaat (2008) for constructing an SVM with high classification accuracy.  
We improve the accuracy of SVMs by introducing a new kernel function that performs 
better than existing kernel functions (Zanaty and Aljahdali, 2008). The proposed  
kernel function combines both polynomial (POLY) and RBF. The improved 
classification accuracy is demonstrated empirically by application to a variety of non-
linear datasets. 

The rest of this paper is organised as follows: In Section 2, the problem formulation is 
stated. In Section 3, kernel functions are discussed, where the new kernel functions is 
introduced and analysed. A comparison between the proposed and existing kernels is 
given in Section 4. Finally, Section 5 summarises the properties and advantages of the 
proposed kernel functions and conclusions are given. 

2 Problem formulation 

The accuracy problem is usually represented by the proportion of correct classifications. 
For many data sets, the SVMs may have zero accuracy, either because the kernel function 
is inappropriate for the training data or because the data contains mislabelled examples. 
The latter problem can be addressed by using a soft margin, or tolerance, that accepts 
some misclassifications of the training examples. A soft margin can be obtained in two 
different ways. The first is to add a constant factor to the kernel function output whenever 
the given input vectors are identical. The second is to define a priori an upper bound on 
the size of the training set weights. In either case, the magnitude of the constant factor to 
be added to the kernel, or to bind the size of the weights, controls the number of training 
points that the system misclassifies. The setting of this parameter depends on the specific 
data. Completely specifying an SVM therefore, requires specifying two parameters, the 
kernel function and the magnitude of the penalty for violating the soft margin. The focus 
here is to specify the kernel function and it is assumed that the soft margin is the most 
appropriate for a given data set. 

2.1 Support vector machine (SVM) 

The basic form of a SVM classifier can be expressed as: 

( ) . ( )g x w x bϕ= +  (1) 
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where nx R∈  is the input vector, w is a normal vector of a separating hyperplane in the 

feature space produced from the mapping of a function 
'

( ) : n nx R Rϕ →  ( ( )xϕ  can be 
linear or non-linear, n can be finite or infinite), and b is a bias scalar. Since SVMs were 
originally designed for two-class classification, the sign of g(x) associates vector x to 
class 1 or class –1. 

Given a set of training samples x, ,n
ix R∈  i = 1, 2, .., n and corresponding labels 

{ 1, 1},iy ∈ − +  the separating hyperplane (described by w) is determined by minimising 
the structure risk instead of the empirical error (Boser et al., 1992). Minimising the 
structure risk is equivalent to seeking the optimal margin between two classes. The width 

of the margin is 2
2 2 .
. || ||w w w

=  For SVM classification training involves the minimisation 

of the error function (Boser et al., 1992): 

1

1min .
2

N

i
i

w w C ξ
=

+ ∑  (2) 

subject to yi (w.φ(xi) + b) ≥ 1– ξi, ξi ≥ 0, ,i∀  where the scalar parameter C is the trade-off. 
The solution to (2) is reduced to solving a quadratic programming (QP) optimisation 

problem: 

1Max 
2

T T Hα α α α−  (3) 

subject to 
1

0 , , 0,
N

i i i
i

C i yα α
=

≤ ≤ ∀ =∑  where [ ,.., ] ,T
i Nα α α=  and H is a N × N matrix, 

called the kernel matrix, with each element: , ( ). ( ).i j i j i jH y y x xφ φ=  

Solving the QP problem yields: 

1

1

( ),

( ). ( ) ,

N

i i i
i
N

i j i j i
j

w y x

b y x x y i

α ϕ

α ϕ ϕ

=

=

=

= + ∀

∑

∑
 (4) 

Each training sample xi is associated with a Lagrange coefficient iα . Those samples 
whose coefficient iα  is nonzero are called support vectors (SV). Only a small portion of 
training samples become SVs (typically of the order of 3%). Substituting (4) into (1) 
gives the formal expression of the SVM classifier: 

1

( ) ( ). ( )

( , ) ,

i i i

N

i i i
i

g x y x x b

y K x x b

α ϕ ϕ

α
=

= +
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where K is a kernel function: ( , ) ( ). ( ).i j i jK x x x xϕ ϕ=  The most commonly-used kernel 

functions are: 

1 linear i.e., ( ) ,i ix xϕ =  thus, ( , ) . T
i j i j i jK x x x x x x= =  

2 polynomial i.e., K (xi, xj) = (xi.xj + c)d, where c and d are prescribed constants. 

3 Gaussian radial basis (RBF) i.e., 

2

2

|| ||
( )

2( , ) .
i jx x

i jK x x e σ

−

=  

If the chosen kernel is linear, then the SVM is called linear, otherwise, it is a non-linear 
SVM. Since the training problem has been solved by using sequential minimum 
optimisation using existing kernels (Lei and Govindaraju, 2005), the focus of efforts has 
been transferred to the evaluation of SVMs (Lei and Govindaraju, 2005; Tsang et al., 
2005; Maji et al., 2008) in attempts to improve evaluation speed and the challenging issue 
of accuracy. 

2.2 Multi-class SVMs 

The multi-class problem is defined as the classification problem that has many classes or 
attributes. Existing SVMs (Lei and Govindaraju, 2005) are binary classifiers, i.e., they 
can classify two classes. To be able to cope with multiple (> 2) classes, the existing 
classifiers have to be extended. The goal is to map the generalisation abilities of the 
binary classifiers to the multi-class domain. Multi-class SVMs are usually implemented 
by combining several two class SVMs. In the literature, numerous schemes have been 
proposed to solve this problem including: one-versus-all methods using the  
winner-takes-all strategy (WTA SVMs); one-versus-one methods implemented by  
max-wins voting (MWV SVMs) and error-correcting codes (Rifin and Klautau, 2004). 
Hsu and Lin (2002) compared these methods on a number of data sets and found that 
MWV- and WTA-based SVMs give similar performances. Hastie and Tibshirani (1998) 
proposed a good general strategy called pair wise coupling for combining posterior 
probabilities provided by individual binary classifiers. This was extended in Lei and 
Govindaraju (2005) to improve the classification speed. Since SVMs do not naturally 
give out posterior probabilities, they suggested a practical method of generating these 
probabilities from the binary SVMs outputs. These probabilities together with pair wise 
coupling are then used to carry out the multi-class classification. In the implementations 
of the methods given in Hastie and Tibshirani (1998) and Lei and Govindaraju (2005), 
the time complexity is high, much time is consumed in solving the optimisation problem 
directly on the core set. 

The proposed method adopts a multi-class SVM classifier based on the voting 
strategy (MWV) (Rifin and Klautau, 2004; Sonnenberg et al., 2006; Cuturi, 2007; 
Haasdonk, 2005) due to computational simplicity, and can be implemented using the 
SVM toolbox within MATLAB (Maji et al., 2008). The classifier is designed to read  
two input data files, the training data and the test data (for more details see Maji et al., 
2008). 
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3 Kernel functions 

Kernel functions are used to non-linearly map the input data to a high-dimensional space 
(feature space). The new mapping is then linearly separable (Maji et al., 2008; Ratsch, 
2005; http://www.ics.uci.edu/~mlearn/MLRepository.html.). The idea of the kernel 
function is to enable operations to be performed in the input space rather than the 
potentially high dimension feature space. For example, the inner product does not need to 
be evaluated in the feature space. The mapping is achieved by replacing the inner product 
(x.y) → Φ(x).Φ(y). This mapping is defined by the kernel: 

K(x, y) (x). (y).= Φ Φ  

For given non-separable data, in order to be linearly separable, a suitable kernel has to be 
chosen. Classical kernels, such as Gauss and POLY functions, can be used to transfer 
non-separable data to separable, but their performance in terms of accuracy is dependent 
on the given data sets. 

The following POLY function performs well (Maji et al., 2008) with nearly all data 
sets, except high dimension ones: 

1 2(1 , )dPOLY x x= + 〈 〉  

where d is the polynomial degree. The same performance (Maji et al., 2008) is obtained 
with the Gauss RBF of the following form: 

e eRBF
pD V

σ σ− −

= =  

where V = pD, and 2
1 2

0

( ) ,
m

i i
i

x xσ
=

= −∑  p is the kernel parameter and D is the dimension 

of the input vector (number of attributes). 

3.1 Proposed kernel function 

A new class of kernel function is proposed that can handle high dimension data sets and 
is computationally efficient when handling non-separable data with multi attributes. It has 
been shown that POLY has a better classification accuracy than RBF (Lei and 
Govindaraju, 2005) whilst RBF is faster than POLY (Tsang et al., 2005). The proposed 
method simply combines both Gauss RBF and POLY kernels to take advantage of their 
respective strengths. The proposed kernel is given by: 

(1 )
d

ePRBF
V

θ⎛ ⎞+
= ⎜ ⎟⎜ ⎟
⎝ ⎠

 

where 1 2
0

| | .
m

i i
i

x xθ
=

= −∑  
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3.2 Proposed kernel function analysis 

The geometric characteristics of the three kernel functions are illustrated in Figures 1–3. 
By comparing the geometric shapes of these functions, it can be seen that the proposed 
kernel function (RBPF) (Figure 3) has a large convex region compared to the classical 
POLY (Figure 1) and Gaussian (Figure 2) functions. In addition, the proposed function 
(RBPF) is continuous and decreasing when sampling x increases, an important property 
for improved accuracy and evaluation speed of any SVMs algorithm. 

The convergence of the proposed function can be determined by evaluating the limit 
of RBPF at θ = 0 and infinity: 

0

(1 ) 2lim
dde

V V

θ

σ

−

→

⎛ ⎞+ ⎛ ⎞⇒⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠
 

(1 ) 1lim .
d

d
e
V V

θ

σ

−

→∞

⎛ ⎞+
⇒⎜ ⎟⎜ ⎟

⎝ ⎠
 

This proves that RBPF is convergent and does not depend on the size of the dataset. 
Moreover, the behaviours of the corresponding POLY and Gaussian (RBF) can be 
estimated also by considering the limit of each kernel function individually. 

In the case of POLY: 

1 20
lim (1 ( ) ) 1d

i ix x
σ→

+ ⋅ ⇒  

( )1 2lim 1 ( )d
i ix x

σ→∞
+ ⋅ ⇒ ∞  

In the case of RBF: 

0

1lim e
V V

θ

σ

−

→

⎛ ⎞
⇒⎜ ⎟⎜ ⎟

⎝ ⎠
 

lim 0e
V

θ

σ

−

→∞

⎛ ⎞
⇒⎜ ⎟⎜ ⎟

⎝ ⎠
 

RBPF is bounded and convergent for any dataset. This is not true in the case of the POLY 
kernel function. Further, normalising the data sets to be within the interval [–1, 1] avoids 
the possibility that the POLY function will diverge. Also, accurate results can be 
achieved in RBPF by estimating a suitable choice for the degree d using the training data; 
this opportunity does not exist in the RBF kernel. 

As an independent test, the geometric shape of the three kernel functions, POLY, 
RBF, and RBPF constructed on the same datasets x1, x2 are shown in Figures 1, 2 and 3 
respectively. The shape of POLY, Gauss (RBF) and the proposed (RBPF) kernels, 
respectively, is estimated within the interval [–1, 1] using two-dimensional vectors;  
x1 = (x11, x12), x2 = (x21, x22), and the degree of the POLY, d, is fixed at three. POLY does 
not coverage at all, RBF is convergent and bounded at 0.95, and RBPF is convergent and 
bounded at 0.85. This interval also ensures that the proposed function has faster 
convergence and gives a large convex region. In the next section, the improved 
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performance of this kernel is demonstrated by application to a variety of data sets, 
including non-separable and sets with many attributes. 

Figure 1 The polynomial kernel (see online version for colours) 
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Figure 2 The Gauss kernel (see online version for colours) 
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Figure 3 The proposed kernel (see online version for colours) 

 

4 Comparison between the proposed and traditional kernels 

4.1 Data sets 

The performance of the proposed kernel with SVMs, in terms of classification accuracy, 
is evaluated by application to a variety of data sets. Table 1 shows the description of 
these data sets originally used in http://www.ics.uci.edu/~mlearn/MLRepository.html and 
http://www.liacc.up.pt/ML/old/statlog/datasets.html1, and can be characterised according 
to the training set size leading to large (sets 1 → 4) and small (sets 5 → 8). A multi-class 
SVM classifier was designed based on the one versus one algorithm and implemented 
using the SVM toolbox within MATLAB, the main features of which are: 

1 all parts are written in plain MATLAB guaranteeing ease of modification 

2 special kinds of kernels that require much computation such as the Fisher kernel, 
which is based on a model of the data, can easily be incorporated 

3 extension to multi-class problems via error correcting output codes is included 

4 unlike many other SVM toolboxes, MATLAB SVM toolbox can handle SVMs with 
1- or 2-norm of the stack variable 

5 for both 1- and 2-norm, a decomposition algorithm is implemented for the training 
routine, together with efficient working set selection strategies. 
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Table 1 Data sets 

No. Data set Classes Attributes Training Test 

1 Letter 26 16 15,000 5,000 

2 pendigits 9 16 7,435 3,448 

3 waveform 3 21 4,700 300 

4 Satimage 6 36 4,435 2,000 

5 DNA 3 180 2,686 500 

6 Segment 7 18 1,810 500 

7 ABE 3 16 1,763 560 

8 Zoo 7 17 70 31 

4.2 Experiments 

In order to determine the performance characteristics of an SVM based on the proposed 
kernel, a testbed was constructed using an MWV SVM classifier (Rifin and Klautau, 
2004), and the SVM toolbox within MATLAB. Since a support vector is expressed by a 
quadratic optimisation problem, the solution is globally optimal. However, because of the 
use of nonlinear kernels, the dual optimisation problem has to be solved whose number of 
variables is twice the number of the training data. Therefore, two input data files, the 
training data for optimising the parameters and the test data, are read into the testbed. 

Each file is organised as records, each of which consists of a vector of attributes x:  
x1i = (x1, x2,…, xm) followed by the target y: 2 1 2( , ,..., )i cx y y y∈  where m is the number of 
attributes and c is the number of classes. The SVM constructs c(c – 1)/2 binary 
classifiers, and uses the training data to find the optimum separating hyperplane. Finally, 
the test data is used to compute the classifier accuracy defined by: 

Acc ( / )*100,n N=  

where n is the number of correct classified examples and N is the total number of the test 
examples. 
Table 2 SVM classification accuracy 

Data set RBF (P, d = 3) POLY (d = 3) RBPF (P, d = 3) 

1 82.6 93.9 93.9 

2 85 82.52 90.99 

3 94.9 98.67 99 

4 92.95 96.7 96.1 

5 94.86 89.46 98.8 

6 97 92.12 99 

7 100 99.82 99.82 

8 90.88 92.98 95.92 
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Having developed the test bed, the next stage is to compare the classification accuracies 
of SVMs based on each of the three kernels: POLY, Gauss and the proposed kernel. By 
determining the classification accuracy for a range of data sets including sets of different 
number of classes and different numbers of attributes the relative performances of a SVM 
based on the three kernels can be evaluated. For the range of data sets given in Table 1, 
the accuracy levels are given in Table 2. 

4.3 Result analysis 

From Table 2, the Gauss RBF, with p, d = 3 gives better classification accuracy with 
small data sets (5 → 8) than the POLY function. The POLY kernel, with four dimension 
data and d = 3, gives better results than RBF for large sets (1 → 4). The proposed kernel, 
RBPF, gives the best classification accuracy in nearly all the data sets regardless of the 
size of the data. For data set seven (ABE), although, the size of dataset is small, and one 
feature is enough to distinguish a pair of ABE classes, the proposed kernel still achieves 
good results. This is shown by the experimental results given in Table 2. Here p = 1, with 
d = 3, and the resulting classification accuracy of the SVM based on the proposed kernel 
is 99.82%. 

When considering the performance of an SVM in terms of classification accuracy,  
of interest is the relationship between the accuracy and the complexity of the data  
sets. Ideally, the classification accuracy would be independent on the number of  
classes and the number of attributes. This relationship is investigated for SVMs  
based of the three kernels and the results within Tables 1 and 2 are presented in  
Figures 4–6. 

Figure 4 shows the relation between the classification accuracy using the three 
kernels, RBF, POLY, RBPF with a range of different number of classes. It is clear that 
the classification accuracy of the SVM based on the proposed kernel (RBPF) is 
consistently better than the classification accuracy of the SVM based on both RBF and 
POLY kernels, even in the case of the largest number of classes. 

Figure 5 shows the relation between the classification accuracy using the three 
kernels, RBF, POLY, RBPF with a range of different number of attributes. As with 
Figure 4, it is clear that the classification accuracy of the SVM based on the proposed 
kernel (RBPF) is consistently better than the classification accuracy of the SVM based on 
both RBF and POLY kernels. 

Interestingly, Figure 5 also shows that as the number of attributes increases, the 
improvement in classification accuracy of the SVM based on the proposed kernel 
compared to the SVMs based on both POLY and RBF kernels also increases. This is 
clearly seen by comparing the classification accuracies for data set five which has the 
largest number of attributes. This improved performance is due to the fact that the 
proposed function is more complex and combines the performance of both its parents, 
Gauss and POLY functions. 

Figure 6 presents the mean classification accuracy obtained for SVMs based on each 
of the three kernels applied to all eight data sets. The improvement in classification 
accuracy afford by the SVM based on the proposed kernel is clearly seen as it gives the 
best mean accuracy compared to either of the SVMs based on the established Gauss or 
POLY functions. 
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Figure 4 Classification accuracy of RBF, POLY, RBPF kernels with number of classes  
(see online version for colours) 
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Figure 5 Classification accuracy of RBF, POLY, RBPF kernels with number of attributes  
(see online version for colours) 
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Figure 6 SVM mean classification accuracy (see online version for colours) 
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5 Conclusions 

In this paper, the classification accuracy and numerical efficiency of SVMs have been 
improved by mapping the training data into a feature space by the aid of new kernel 
functions. The computational complexity of the classification operation does not depend 
on the dimensionality of the feature space, which can even be infinite. 

Different sizes of data sets have been used with different attributes from  
two sources (available at http://www.ics.uci.edu/~mlearn/MLRepository.html; 
http://www.liacc.up.pt/ML/old/statlog/datasets.html). The experimental results show that 
RBF gives better classification accuracy with small data sets compared to the POLY 
function. However, the POLY kernel gives better classification results in the large data 
sets. Whereas the proposed kernel, RBPF, obtains the best accuracy in nearly all the data 
sets, especially in the largest number of attributes data set, because the proposed function 
combines the performance of both its parents, Gauss and POLY functions. The results 
obtained from the data sets are encouraging and suggest that the proposed method is 
worth further consideration. 
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